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Introduction

This work is concerned with theoretical methods for designing individualized optimal
strategies of breast cancer surveillance. The problem of optimal cancer surveillance
is set up as a search for optimal scheduling of screening examinations subject to
certain constraints on the number and timing of medical tests. The hypothesis to be
tested is that the efficacy of breast cancer detection can be enhanced through incor-
porating aggregated family history information into a mathematical model designed
to construct optimal schedules of cancer surveillance. The proposed methods are to
be validated using epidemiological data on breast cancer from the Utah Population
Data Base and the Utah Cancer Registry.

1. Statement of Work

This annual report covers the following four tasks formulated in the statement of
work.

Task 1: Develop programs for estimating the hazard function for breast cancer using
the data-adaptive method of kernel estimation.

Task 2: Develop programs for estimating the hazard function for breast cancer using
the spline approximation method.

Task 3: Develop programs for estimating the hazard function for breast cancer using
parametric estimation techniques.

Task 4: Construct optimal surveillance scheduling strategies based on the three
methods of hazard function estimation.

2. The research carried out to meet the objectives
of Tasks 1 and 2

2.1. Introduction

The shape of the hazard function may lead to insights into the biology of carcino-
genesis which may not be easily discernable from a study of the survival function
alone. For example, it is typical in the analysis of tumor recurence data to find a
hazard function that is bimodal or unimodal, and that tends to zero as time tends to
infinity [1]. The modes of the hazard may be interpreted biologically as arising from
two different types of failure, one that tends to occur earlier and one that tends to
occur later. In the context of the age-specific hazard function for cancer incidence
the decrease in the hazard function to zero may lead one to conclude that there is
a non-zero fraction of unaffected (immune) individuals. In fact, if the cumulative
hazard appears to be bounded, one should expect the existence of a non-zero immune
fraction. More generally, a large degree of heterogeneity in disease susceptibility
may lead to a population hazard function with one or more well-defined maxima.
The maxima may correspond to discrete subpopulations with different genetic pre-
disposition to disease. A maximum may also result from a continuous frailty, as




the surviving population at higher ages may be overrepresented by individuals with
lower risk [2]. On the other hand, a monotonically increasing (with age at detection)
hazard rate is consistent with a popular belief that spontaneous tumorigenesis can
be modeled as a Poisson process.

The form of the hazard function for breast cancer incidence may depend on
characteristics inherited susceptibility. Inherited mutations in p53, BRCA1, BRCAZ2,
the ataxia-telangiectasia gene (AT), HRAS, and the androgen receptor gene (AR)
have been shown to play a role in breast cancer susceptibility [3]. About 56% of
carriers of the mutation BRCA1 or BRCA2 will get breast cancer by the age of 70
years [4]. BRCAL1 has an estimated allele frequency of between 0.0002 and 0.001 (95%
CI) [5], and accounts for about 3% of diagnosed breast cancer [6]. The allele frequency
of mutations in BRCA2 is estimated at 0.00022 [7]. Germline mutations in p53
and AR are extremely rare, and mutations in the HRAS1 minisatellite locus which
confer increased risk of breast cancer are also rare, having an estimated population
frequency of 6% [3]. In a study of 100 Finnish breast cancer families analyzed
by protein truncation tests and direct sequencing, Vehmanen et al. [8] found that
only 21% of breast cancer families were accounted for by mutations of BRCA1 and
BRCA2, providing indirect evidence for the existence of other, undiscovered breast
cancer genes.

Additional insight can be gleaned from the hazard function for cancer incidence in
the framework of a mechanistic model of carcinogenesis. The most widely accepted
model is the Moolgavkar-Venzon-Knudson two-stage clonal expansion model [9,10].
The Moolgavkar-Venzon-Knudson model has the following assumptions:

(A) Normal, susceptible target cells are initiated according to a (nonhomogeneous)
Poisson process with intensity v(t).

(B) The expansion of the colony of initiated cells and malignant transformation is
specified by a stochastic birth-death-migration process with the division, death (or
differentiation) and transformation. Premalignant cells either divide into two pre-
malignant cells with rate «(t), die with rate §(t), or divide asymmetrically into one
premalignant cell and one malignant cell with rate u(t).

It has been shown that the hazard function for the Moolgavkar-Venzon-Knudson
model with constant parameters increases monotonically and approaches an asymp-
tote [11]. An asymptotic value for the hazard is also reached for the Moolgavkar-
Venzon-Knudson model with piecewise constant parameters, and in that case the
value of the asymptote depends only on the value of the coefficients in the unbounded
interval [11,12].

Expressions for the survivor function were first obtained by Moolgavkar and Lue-
beck [11]. A simple explicit formula for the survivor function S(¢) for the Moolgavkar-
Venzon-Knudson model with constant parameters was obtained by Kopp-Schneider

et al. [13] and Zheng [14]:
9ce0-5(—at+Btu—c)t via

(—a+B8+u+c)+(a—pF—put+cle

S(t) = [ )

where ¢ = \/(704 + B+ p)? — 4aPB. Zheng also presented an expression for the proba-
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bility generating function for the number of malignant cells given a single malignant

cell at time ¢t = 0, allowing an expression for the promotion time distribution

(a=B-p+oa-B-p—det(@—f-pte-a+ftnto
20((a = f—p+cle s+ (—a+ B+ p+c)

F(t) =
(2)

to be given. It is easy to see that S(t) and F(t) above are related by the formula

S(t) = exp {—u /Ot F(:z:)da:} (3)

which was shown by Hanin and Yakovlev [15] to be valid in a more general setting.

Yakovlev and Tsodikov [16] replace assumption (B) above with the following as-
sumption:

(C) Progenitor cells are transformed into malignant lesions at a random with cumu-
lative distribution function F'(z). All progenitor cells are promoted independently
of one another.

Assuming F(0) = 0, it follows that the process of malignant transformation is
also a Poisson process, with integral rate A(t) = [Jiv(u)F(t — u)du. As in the
Moolgavkar-Venzon-Knudson model, the simplest model of spontaneous carcinogenis
takes v(t) = v to be constant, in which case A(t) = v [§ F(u)du and the hazard
function for time-to-tumor, given by A(t) = vF(t), is nondecreasing. The probability
S(t) that there are no malignancies by time ¢ is then given by (3).

This model may easily be modified to handle inherited lesions, via the limiting
case where v is taken to be a delta function at the origin. If F(t) is assumed to be
absolutely continuous, then the integral hazard rate A(t) is equal to vF(t) and the
hazard function A(t) = vF'(t) = v f(¢t), where f(t) is the probability density function
associated with F'(t). We see that the hazard function for spontaneous and inherited
lesions are quite likely to have very different shapes.

Even though a thorough study of the hazard function may lead to new insight
into the process of carcinogenesis, few if any population-based cohorts have been
analyzed to determine the hazard function for cancer incidence.

2.2. Data

The data for this study was obtained by linking records from the Utah Population
Data Base (UPDB) with the Utah Cancer Registry (UCR). The UPDB consists of
the genealogical records of more than 1,000,000 individuals who were born, died, or
married in Utah, or en route to Utah during the nineteenth and twentieth centuries.
Since 1973 the UCR has been reporting to National Cancer Institutes Surveillance
Epidemiology and End Results (SEER) program, and is required to maintain very
high standards for case reporting and follow-up, and to periodically undergo quality
control audits by SEER personnel to assure uniformly high quality and consistency
from year to year. The available follow-up information comes either from Utah death
certificates, which have been linked to the UPDB genealogical data every year from
1933 through the beginning of 1997, or from linkage of the HCFA beneficiary data
to the UPDB. The study population consists of 126,141 men and 122,208 women
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recorded in the Utah Population Database, who were born from 1874 to 1931 and for
whom follow-up information is available that places them in Utah during the years
of operation of the Utah Cancer Registry (1966-present). There are 5,372 cases of
female breast cancer represented in the data. Since methodological research was the
major undertaking in Year 1, we plan to conduct analyses of epidemiological data
in 2000. Analyses will be performed on subcohorts based on birth year (1874-1889,
1890-1899, 1900-1909, 1910-1919, and 1920-1931).

2.3. Methodological Problems
Truncation: Nonparametric Estimation

We wish to estimate the age specific hazard function for breast cancer from the data
described above, taking into account that the data is subject to random truncation:
cases which occurred during or before 1965 are not recorded in the dataset. Subject
were between the ages of 34 and 86, at the time of truncation. Thus, analysis of the
data must take into account not only to the effects of right censoring, but also the
effects of left random truncation due to delayed entry into the risk set.

The problem of random truncation can be formulated as follows. Let the trun-
cation time Y have distribution function G(y) and the failure time (time of cancer
diagnosis) X have distribution function F'(z). We require that truncation be indepen-
dent of failure and for simplicity assume no censoring for the present. Observations
are conditional on the random event X > Y. Let G*(y) and F*(z) be the corre-
sponding distribution functions, conditional on X > Y. Let S(z) = 1 — F(z) be the
survivor function of X. Suppose that we have observations (Y, X7),..., (Y, X»)
from the conditional distribution. The full likelihood of the observed data is given
by

L= f_{[dF(X»dG(Y;)/a] , (4)

where a = [ [, dF(z)dG(y). A key observation is that if X and Y are independent,
then the hazard of X given X > Y = y at z > y is equal to the hazard of X at z
[17,18]. This observations leads to the result, first mentioned by Kaplan and Meier
[19], that if the distribution G(t) is allowed to vary freely, the natural generalization
of the product limit estimator, given by the formula

s =TI (1—@), (5)

Xy<t

where R(u) = #{Y* < U < X}} is the number of subjects at risk at U, is the
nonparametric maximum likelihood estimator (NPMLE) of the survivor function
S(t) of X (see, for example [17,18,20]).

This result extends naturally to the case with random independent censoring [20].
It also easily follows that in the nonparametric setting (again with no censoring),
maximizing (1) is equivalent to maximizing the conditional likelihood of (X7, ..., X})




given (Y, ...,Y¥), which can be written

CL= 1‘[ FX)/8(Y). (6)

i=1

(see, for example, [19-22]). Maximizing the conditional likelihood also leads to the
familiar Nelson-Aalen estimator for the integrated hazard function H(t) of X [20],

which is given by
= >, R(X))™. (7)

X <t
S

These results can be extended to the case of right censoring [20].

Truncation: Parametric Models

We consider the situation where X and Y are independent, F'(z) is parametrized,
while G(y) is allowed to vary freely. In a later subsection F'(z) will be come from a
quadratic spline model.

The data are independent pairs (y1,%1), .. ., (Yn, Zr) from the joint distribuition
(Y, X), conditional on (Y < X). We suppose, for simplicity, that there are no ties
among y1,%2, - - - , Yn, and suppose X has absolutely continuous distribution function
coming from a family F(z;Z) parameterized by a vector Z, with corresponding sur-
vival function S(z; %) = 1 — F(xz;Z) and density f(x;Z). The NPMLE for G should
consist of (unknown) point masses qi1,¢z,...,¢» placed at the points y1,¥2,...,Yn.
The logarithm of the complete likelihood (4) can be rewritten

i=1 j=1

log(L) = Zn:[log(f (233 2)) + log(g:)] — nlog li S(ys; éﬁqi] : (8)

If we factor the out the part of the likelihood corresponding to formula (6), the
logarithm is given by

n

log(CL) = Y [log(f(z:; 2)) — log(S(yi; 2))]- (9)
i=1
We now discuss the changes which must be made in when censoring and additional
covariates are present. If §is a vector of additional covariates, A(z, 5, Z) denotes the
hazard associated with F(z, §; Z) and A(z, §; Z) the cumulative hazard, we note that
(9) becomes

log(CL) = Z[log (24,5, 2)) — (A(zi, 53 2) — Mys, 5 2))]. (10)

In the presence of right censoring which is independent of both the failure and
truncation times, z; is replaced in the above formulation by the minimum of the
failure and censoring time. The term f(z,8§;Z) in the likelihood is replaced by




f(z, 5 2)28(x, 5, 2)1 %, where §; = 1 if observation i is a failure and §; = 0 otherwise,
and the conditional likelihood (6) (with z;, §; and y; regarded as fixed) becomes

CL = [[1f (x:, 5 2)°S (2:, 55 %)) /S (s, 53 ).

i=1
In this setting log(C'L) becomes

n

log(CL) = > _[6ilog(A(wi, §i; 2)) — (Alwi, §i; 2) — Alys, 85 2))]- (11)

=1

W havee chosen to maximize (11) rather than the full likelihood. Under appropriate
conditions the two maximization procedures are equivalent.

Spline Models

We choose to model the hazard via quadratic splines as in [23]. A quadratic spline
with m knots specifies the hazard to be of the form

2 m
Am(t) =D 70it" + D 12t — )2 (12)
i=0 =1

where (z), = max(z,0). For each birth cohort, we will fit splines with knots which
are equally spaced in the interior of the interior [Tinin, Tonaz), where T, is the min-
imum truncation age in the cohort and T,,, the maximum follow-up (failure or
censoring) time. Restrictions should be placed on the coefficients to ensure that A, (t)
remains positive for all ¢. Thus with m knots the number of parameters is m + 3.
Models can be fit using maximum likelihood techniques applied to the conditional
likelihood, as given by (11).

We have developed software designed to compute the spline estimates by max-
imizing log(CL) using the algorithm of Powell [24]. We start with one knot and
increase the number of knots until the fit is not improved, as determined by the like-
lihood ratio test at the significance level o = 0.05. Two other subcohort estimates
of the hazard function can be computed for comparison with the spline estimator; a
life table version of (5), and a Gaussian kernel estimate based on the Nelson-Aalen
estimator (7). We have developed relevant software for this purpose as well.

2.4. Future Plans

Using the computer programs developed in Year 1, the hazard function for cancer
incidence will be estimated from left truncated and right censored data based on
the the conditional likelihood. Four estimation procedures based on the conditional
likelihood will be used to estimate the age-specific hazard function from the data;
these are the life-table method, a kernel method based on the Nelson Aalen estimator,
a spline estimate, and a proportional hazards estimate based on splines with birth
year as sole covariate. The latter model is aimed at adjusting for the cohort effect.
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3. The research carried out to meet the objectives
of Tasks 3 and 4

3.1. Introduction

When evaluating potential benefits of screening in different populations (different
racial composition, different geographic regions, etc.), it makes sense to compare the
expected effects for the schedules which are, in some clearly defined sense, optimal for
each of the populations under consideration; this represents the usual way of "stan-
dardization through optimization". In doing so, we compare maxima of potential
benefits that could be gained in each setting.

The problem of screening optimization is of great interest in itself. Because of
the significant cancer incidence and progress of tumor detection technology, cancer
surveillance and screening are becoming increasingly important and costly public
health problems. It is clear that appropriate mathematical methods are indispens-
able for a more effective management of the caseload through designing optimal
surveillance strategies. Interest in exploring this avenue has quickened in the past
few decades [16, 25-39)].

The problem of optimal cancer surveillance can be set up as a search for opti-
mal scheduling of screens subject to certain constraints on the number and timing
of medical examinations. Yakovlev and Tsodikov [16] have developed methods for
constructing optimal surveillance strategies based on the minimum delay time crite-
rion, given that the total number of examinations is fixed, see also [39]. They used
dynamic programming methodology to solve the associated optimization problem.
However, there are two weak points in their approach. First, the probability of tumor
detection is assumed to be independent of the process of tumor regrowth. Second,
estimation of the tumor onset time distribution is feasible only if a sample of diag-
nostic times produced by a discrete surveillance program with known false negative
rate is available. The same applies equally to pre-diagnosis screening programs.

To surmount the above mentioned problems we have explored a new avenue in
the problem of cancer screening optimization. The newly developed methodology is
well adapted to the structure of the data amassed in the Utah Population Data Base
and the Utah Cancer Registry. As a measure of the effect of screening, we propose to
use the difference between the expected tumor sizes at detection with and without
screening, which coincides with the Kantorovich distance between the distributions
of the corresponding random variables. The structure of this distance allows for
characterizing the net effect of screening, as compared to that of spontaneous detec-
tion. Taken alone, the design of optimal schedules of cancer surveillance does not
require information on tumor size at detection; such schedules can be constructed
once the basic model parameters have been estimated in one way or another from
epidemiological data at hand.

The proposed approach offers the following distinct advantages:

1. It provides a simple but still realistic description of cancer latency;
2. Tt can be generalized in various ways while retaining its basic structure;
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3. It furnishes a biologically meaningful interpretation of data analyses;

4. Tt accommodates standard population-based statistical data; its implementation
does not depend heavily on availability of the data yielded by screening trials;

5. Rigorous statistical methods are available for estimation of model parameters;

6. It can be used for designing optimal strategies of cancer screening and surveillance.

3.2. The Model

In describing the natural history of cancer, the process of tumor development can be
broken down into three stages. These stages are:

e formation of initiated cells;

e promotion of initiated cells resulting in appearance of the first malignant clono-
genic cell; ’

e subsequent growth and progression of malignant tumor.

The duration of each stage of carcinogenesis is thought of as a random variable.
In our sample calculations, we used a two-parameter gamma family to specify the
distribution of the length of the first two stages of carcinogenesis. However, more
elaborate mechanistic models of carcinogenesis are available to describe the time
to the event of malignant transformation at the cellular level (see Section 2.1). In
particular, we plan to use the Moolgavkar-Venzon-Knudson model and the Yakovlev-
Polig model in our future research.

We proceed from the following general functional form for the tumor size (the
number of cells in a tumor) S :

S(w) = fo(w),

where w is the time from the moment of the onset of cancer, and ¢ is a parameter
which may be scalar or vector, deterministic or random. It is assumed that, for every
0, fyis a strictly monotonically increasing absolutely continuous function such that
f3(0) = 1. For a given 6, denote by gy the inverse function for fy, and set

w
Oy(w) = /0 folu)du.
Specific laws of tumor growth of primary interest are:

(1) Deterministic exponential growth; in this case, S(w) = e’ where A > 0 is a
constant growth rate, see [40] for substantiation;

(2) Exponential growth with A thought of as a gamma distributed r. v. [41];

(3) The Gompertz law:
_e—B’LU)

S(w) = eAl :

with constant parameters A, B > 0.
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The sequence of moments of time assigned for medical exams for a specific cancer
and counted from the birth of a patient will be called a screening schedule. Let T be
the set of all possible screening schedules 7 = {n<m<..< Tn}. The set 7 may
be subject to (some of) the following restrictions:

(a) n < mg, where ng is an upper bound for the number of exams;

(b) 71 > m and 7,, < M, where m and M are the earliest and the latest times for
the first and the last exams, respectively;

(c) g1 — 7 > h > 0for all 4 = 1,2,...,n — 1. This condition suggests a lower
bound h for the minimal duration between any two successive exams.

Other restrictions on the moments of exams can also be accommodated. In the
language of control theory, the set 7 is referred to as the set of admissible schedules.

3.3. The Screening Efficiency Functional

Numerous attempts have been made to relate the probability of detecting a tumor
to its size [40-46]. Following Brown et al. [44], we assume that the rate of tumor
detection is proportional to the current tumor size.

We distinguish between spontaneous and screening based tumor detections. The
first occurs in the absence of or concurrently with screening and is thought of as a
continuous process. In contrast to this, screening based detection is an instantaneous
event that may occur only at the moments of the prescribed medical exams and is
therefore a discrete process. When both types of detection are present, they can be
viewed as competing risks.

Let random variables W, and Wi, denote the times of spontaneous and screening
based detections, measured from the moment of cancer onset, respectively, and let
T be the time of tumor onset. We have derived a formula for the screening efficiency
functional proceeding from the following two biologically natural assumptions.

1. The r.v.’s Wy and T are independent.

2. For every t > 0, the r.v.’s Wi and W} are conditionally independent given that
T =t.

The first assumption implies that the moment of spontaneous tumor detection mea-
sured from the appearance of the first malignant clonogenic cell is independent of
the prior duration of tumor latency. The second assumption reflects a technological
(or instrumental) nature of both detection processes. It states that, given the mo-
ment of cancer onset, the two times W, and Wi, at which competing events of the
spontaneous and screening based tumor detection may occur, are independent. This
statement immediately follows from the assumption that both detection processes
are completely determined by the current tumor size as a deterministic function of
time.

For an admissible screening schedule 7 € 7, we define the efficiency functional
as the Kantorovich distance dx(Ny, N;7) between the tumor sizes Ny and N at
spontaneous and combined detection. It is well known [47, 48] that

d(N, No;7) = /100 | Fy,(n) — Fy(n) | dn.
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An alternative expression for the efficiency functional is given by
d(N,No;7) = / Fy,(n)dn — / Fx(n)dn = ENg — EN,
1 1

where E stands for the expectation.

An explicit analytic expression for screening efficiency functional is presented in
the attached paper by Hanin et al. (accepted for publication in Mathematical and
Computer Modelling).

The optimization problem

d(N,Ny;7) » max, 7€T,

has been solved by exhaustive search with some simplification arising from the special
form of the dependence of the efficiency functional on 7.

3.4. Numerical Experiments

The purpose of our numerical experiments was to check feasibility of numerical and
optimization problems associated with the proposed approach to stochastic modeling
of cancer screening. These experiments are described at length in the attached paper
by Hanin et al. The most interesting finding was that in the case of exponential
tumor growth optimal screening schedules are uniform or very close to such. The
parameter values used in our sample computations were judiciously chosen on the
basis of our experience; they are no better than an educated guess. However, this
study clearly shows that mathematical and computational problems of optimal cancer
surveillance are tractable within the framework of the proposed model. What is now
required is to make a final stride towards the use of parameter estimates obtained
from population-based epidemiologic data.

3.5. Future Plans

The model will be validated using the relevant epidemiological data on birth co-
horts identified through the Utah Population Data Base. An appealing possibility
would be to estimate unknown parameters of breast cancer latency solely from the
age-at-diagnosis data. However, this is unlikely to be feasible given the number of
parameters incorporated into the model. The main obstacle is that the available in-
formation is too sparse for estimating all the parameters, and a search for additional
sources of data is clearly warranted. On the other hand, our modeling techniques
allow incorporation of the process of tumor detection into mechanistic models of
tumor latency, thereby making it possible to utilize data on tumor size at detec-
tion as an additional source of information on the natural history of the disease.
This information is available in the Utah Cancer Registry. For a given functional
form of tumor growth, we will obtain within the framework of our model the cor-
responding joint distribution of tumor size and age at detection. Proceeding from
this joint distribution we will construct the likelihood of the sample under study.
The likelihood function will be maximized numerically by computer using nonlinear
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programming methods [24]. Once the estimation problem has been solved we are
in a position to design optimal schedules of breast cancer surveillance allowing for
individual information on family history.

Key Research Accomplishments

Our key accomplishments in Year 1 can be summarized briefly as follows:

e We have developed computer programs implementing four statistical procedures
for estimation of the hazard function; these procedures accommodate data subjected
to random truncation and censoring.

e A new method has been developed for designing optimal schedules of breast
cancer surveillance specially adapted to population-based settings.

e Numerical experiments have shown that mathematical and computational prob-
lems of optimal cancer surveillance are tractable within the framework of the pro-
posed model of cancer surveillance and detection.

Reportable Outcomes

1. Hanin, L.G., Tsodikov, A.D., and Yakovlev, A.Y. Optimal schedules of cancer
surveillance and tumor size at detection, Mathematical and Computer Modelling, in
press (see Appendix).

2. Hanin, L.G. Optimal schedules of cancer surveillance, presented at the Interna-
tional Workshop on Cure Rate Estimation, Tampa, Florida, February 19-21, 1999.
3. Yakovlev, AY., Tsodikov, A.D., and Hanin, L.G. Optimal schedules of breast
cancer surveillance, Abstract, Era of Hope Meeting, Atlanta, June 2000.

4. Boucher, K.M. and Kerber, R.A. The shape of the hazard function for cancer
incidence, Abstract, Era of Hope Meeting, Atlanta, June 2000.

5. Yakovlev, A.Y. Mechanistic Modeling of Breast Cancer Surveillance, Grant Appli-
cation, RFA "Cancer Intervention and Surveillance Network (CISNET)", NIH/NCI.

Conclusions

We have developed a mathematical model yielding an algorithm for designing opti-
mal schedules of breast cancer surveillance. An explicit expression of the screening
efficiency functional has been derived. The derivation is based on a plausible assump-
tion that the intensity of detection (the hazard function for the age at detection)
is proportional to the current tumor size. The main advantage of the proposed ap-
proach is that it accommodates cohort data of a fairly general structure, not only the
data resulting from screening trials. We have also developed several numerical algo-
rithms and software for estimating the hazard function for breast cancer incidence
from the data amassed in the Utah Population Data Base. Allowing for the effects
of random censoring and truncation, these procedures will be used in future research
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for testing covariate effects associated with different indicators of family history.

So what? We now have the necessary tools for:

e designing optimal schedules of breast cancer surveillance given the numerical
parameters describing the natural history of the disease are known;

o testing covariate effects associated with different indicators designed to aggre-
gate family history information.

In Year 2, our focus will be on the development of methods for estimation of the
natural history of breast cancer from the data available in the Utah Population Data
Base and the Utah Cancer Registry. Using these resources we will also test indicators
of family history in order to select the most informative one for the purposes of
individualization of breast cancer surveillance strategies.
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Dedicated to the memory of Robert Bartoszynski

ABSTRACT - The paper explores methodological and mathematical aspects of a
new approach to constructing optimal schedules of cancer screening. This approach
consists in systematic use of tumor size at detection, combining stochastic models of
tumor latency, tumor growth and tumor detection, and employing a new biologically
natural screening efficiency criterion defined as the Kantorovich distance between the
tumor size at spontaneous detection in the absence of screening and the tumor size at
detection when both spontaneous and screening based mechanisms are in place. An
explicit formula for the efficiency functional is obtained. Sample calculations suggest
that in the case of exponential tumor growth the optimal screening schedules with a
fixed number of exams have a trend to uniformity.

Keywords — Screening, Optimal schedules, Tumor onset, Tumor size, Carcinogenesis
models

1. INTRODUCTION

Because of the significant cancer incidence and progress of tumor detection tech-
nology, cancer surveillance and screening are becoming increasingly important and
costly public health problems. It is clear that appropriate mathematical methods
are indispensable for a more effective management of the caseload through designing
optimal surveillance strategies. Interest in exploring this avenue has quickened in
the past few years [1-17].

The present work discusses methodological aspects of a new approach to opti-
mization of cancer screening allowing for cancer detection at the earliest stages of
tumor development. This makes the chances of tumor cure more favorable, reducing
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the probability of tumor recurrence. The problem of optimal cancer surveillance is
set up as a search for optimal scheduling of screens subject to certain constraints on
the number and timing of medical exams. Problems of a similar nature have already
been addressed in the literature. Yakovlev and Tsodikov [1] have developed methods
for constructing optimal surveillance strategies based on the minimum delay time
criterion, given that the total number of examinations is fixed, see also [2]. They used
dynamic programming methodology to solve the associated optimization problem.
Their results show that this approach holds much promise for further practical use.
As one example, the current practice for the breast cancer post-treatment surveil-
lance at Curie Institute (Paris, France) is to examine the patients once per semester
for the first 4 years, once per year for the next 6 years, and once every 2 years for
the remaining period. For this strategy, the estimated false negative rate appears to
be equal to 0.2 with the mean delay of the recurrence detection 4.1 months. Taking
advantage of a previously proposed parametric model of tumor recurrence 3], the
authors constructed the optimal strategy that provides a 33% reduction in the delay
time, with the tests that comprise the optimal surveillance schedule tending to be
more frequent when the hazard rate for the time to tumor is high. However, there
are two weak points in this approach. First, the probability of tumor detection is
assumed to be independent of the process of tumor regrowth. Second, estimation of
the tumor onset time distribution is feasible only if a sample of diagnostic times pro-
duced by a discrete surveillance program with known false negative rate is available.
The same applies equally to pre-diagnosis screening programs.

An alternative approach to the problem is to minimize the average cost of surveil-
lance accounting for both examination costs and costs of late detection [1], [4-15].
Since the two cost constituents are linked in the optimization procedure, the cost-
utility approach makes it possible to search for both the optimal number of exami-
nations and their sequence in time. However, the costs of late detection are usually
very difficult to evaluate. For yet another optimization criterion based on the power
of a statistical test for mortality rates, the reader is referred to [16].

Focusing our effort on possible medical rather than economic benefits, we propose
to explore a new approach to the problem which is based on tumor size at detection.
Tumor size is one of the most clinically significant characteristics of tumor maturity
that determines largely the probability of both spontaneous and screening based
tumor detection. This approach makes it possible to utilize data on tumor size at
detection as an additional source of information on the natural history of the disease;
some readily available epidemiologic data obtained from the control population in
the absence of screening appear to be sufficient for estimation purposes. Another
advantage of this approach is that it offers a natural way for incorporating the stage
of tumor progression, where cancer detection normally occurs, into stochastic models
of carcinogenesis. The proposed model of tumor progression accommodates a wide
range of deterministic and stochastic laws of tumor growth.

As a measure of the effect of screening, we propose to use the difference between
the expected tumor sizes at detection with and without screening, which coincides
with the Kantorovich distance [18-21] between the distributions of the corresponding
random variables. The structure of this distance allows for characterizing the net
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effect of screening, as compared to that of spontaneous detection.

Further advancements of the proposed approach to constructing optimal sched-
ules of cancer screening will hopefully give answers to the following questions of
major theoretical and practical importance:

1. Is the optimal efficiency of screening high enough to warrant its implementa-
tion?

2. What is the relation between the optimal screening schedules and their effi-
ciencies for the criteria based on the tumor size and the expected time delay?

3. What are cancer specific patterns of optimal screening schedules?

4. What is the impact of hypothesized laws of tumor growth on the optimal
screening efficiency and the pattern of the optimal examination schedules?

5. What are quantitative characteristics of the initiation, promotion, and pro-
gression stages for specific cancers?

The structure of the present paper is as follows. In Section 2, we describe some
models of the natural history of cancer (including cancer latency and growth), screen-
ing schedules, and cancer detection. Here, we also formulate basic assumptions and
introduce mathematical formalism. An explicit formula for the efficiency functional
is derived in Section 3. Sample numerical calculations and analysis of their results
are addressed in Section 4.

2. BASIC NOTIONS

2.1. Models of carcinogenesis

In describing the natural history of cancer, the process of tumor development can be
broken down into three stages. These stages are:

e formation of initiated cells;

e promotion of initiated cells resulting in appearance of the first malignant clono-
genic cell;

e subsequent growth and progression of malignant tumor.

The duration of each stage of carcinogenesis is thought of as a random variable
(r.v.). In our sample calculations presented in Section 4, we use a two-parameter
gamma, family to specify the distribution of the length of the first two stages of
carcinogenesis. However, more elaborate mechanistic models of carcinogenesis are
available to describe the time to the event of malignant transformation. We provide
two examples of such models.

The most widely accepted model of tumor latency is commonly referred to as
the Moolgavkar-Venzon-Knudson (MVK) model [22, 23]. This Markovian two-stage
model involves four parameters that refer to the rates of initiation of target stem cells
(that is, formation of primary precancerous lesions), and rates of division, death or
differentiation, and malignant transformation of initiated cells. It was first pointed
out by Heidenreich [24] and subsequently by Hanin and Yakovlev [25] and Heidenre-
ich, Luebeck and Moolgavkar [26] that these four parameters are not jointly identifi-
able from time-to-tumor data. In the case of constant parameters, all triples of their

22




identifiable combinations were described at length in [25]. In the latter case, the
MVK model leads to the following explicit formula for the distribution of the total
duration T of the first two stages, that is, of the time from the birth of an individual
to the tumor onset [27, 28]:

(a+ b)e™

FT(t) = PT(T > t) = lm

] , t>0. (1)

Here a, b, p > 0 are identifiable parameters of the model, Fr := 1 — Fr is the
survivor function of the r.v. T, and Fr is the cumulative distribution function (c.d.f.)
of the r.v. T.

Another model of carcinogenesis was proposed by Yakovlev and Polig in [29].
According to this model, the hazard function ¢ of the time T" of tumor latency, which
is related to the survivor function by

Fr(t) = e Joo@ 4 >0, 2)

is of the form

8(s) = b1 % [“h(w)f(s —w)du, 520, 3)
where h is a given time-dependent rate of external exposure, f is the probability den-
sity function (p.d.f.) of the tumor promotion time, and 6y, 6 are positive constants.
The key feature of the Yakovlev-Polig model is that it allows for the process of cell
death to compete with the process of tumor promotion. Two particular cases of the
model referring to spontaneous and induced carcinogenesis were employed in [30]
and [31] to study the distribution of tumor size under a threshold type mechanism
of tumor detection. Recently, Hanin and Boucher [32] found conditions under which
the parameters f, 61,0, of the model given by (3) are identifiable from time-to-tumor
observations. Specifically, a general necessary condition for identifiability of model
(3) is given by the following theorem.

Theorem 1. Suppose that the function h satisfies [3° h(t)dt < oo and that, for some
C >0, h(t) =0 for t > C. If the model is identifiable in a family F then

F(C)>0 forall FelF.

Definition. A family F of absolutely continuous probability distributions on R is
said to be graduated if for every two distinct p.d.f’s f, f € F and for every constant
A > 0, there is a number 7 > 0 (which may depend on f, f, and A) such that either
Af(t) > f(t) for all t > 7 or Af(t) < f(¢) for allt > 7.

The following result generalizes Theorem 1 in the case of graduated families.
Theorem 2. Suppose that h is bounded, supported on [0,C] for some C > 0, and
positive almost everywhere on [0,C]. Then the model is identifiable in a graduated
family F if and only if F(C) > 0 for all F € F.
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2.2. Tumor growth

The following general functional form is assumed for the tumor size (the number of
cells in a tumor) S :

S(w) = fo(w), (4)
where w is the time from the moment of the onset of cancer, and § is a parameter
which may be scalar or vector, deterministic or random. It is assumed that, for every
6, fois a strictly monotonically increasing absolutely continuous function such that
fo(0) = 1. For a given 6, denote by gy the inverse function for fy, and set

Qp(w) := /Ow fo(u)du.

Specific laws of tumor growth of primary interest are:
(1) Deterministic exponential growth; in this case, S(w) = ¢, where A > 0 is a
constant growth rate, see [33] for substantiation,
(2) Exponential growth with A thought of as a gamma distributed r. v. (34];
(3) The Gompertz law:
S(w) = A=),

with constant parameters A, B > 0.

2.3. Screening schedules

The sequence of moments of time assigned for medical exams for a specific cancer
and counted from the birth of a patient will be called a screening schedule. Let T be
the set of all possible screening schedules 7 = {71 < 7» < ... < 7,}. The set 7 may
be subject to (some of) the following restrictions:

(a) n < ng, where ng is an upper bound for the number of exams;

(b) 71 > m and 7,, < M, where m and M are the earliest and the latest times for
the first and the last exams, respectively;

(c) Tigr— T =2 h>0foralli=1,2.,n—-1 This condition suggests a lower
bound A for the minimal duration between any two successive exams.

Other restrictions on the moments of exams can also be accommodated. In the
language of control theory, the set 7 is referred to as the set of admissible schedules.

2.4. Tumor detection

We distinguish between spontaneous and screening based tumor detections. The
first occurs in the absence of or concurrently with screening and is thought of as a
continuous process. In contrast to this, screening based detection is an instantaneous
event that may occur only at the moments of the prescribed medical exams and is
therefore a discrete process. When both types of detection are present, they can be
viewed as competing risks.

Numerous attempts have been made to relate the probability of detecting a tumor
to its size [33-37]. Following Brown et al. [37], we assume that the rate ro of
spontaneous tumor detection is proportional to the current tumor size:

To = OZOS, (5)
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where oy is a positive constant.

Let r.v.’s W and W; denote the times of spontaneous and screening based detec-
tions, counted from the moment of cancer onset, respectively. Then for the moment
W of combined detection, when both detection mechanisms are in place, we have
W = min(W,, W1). Denote by

No = fo(Wo) and N = fo(W) (6)

the corresponding tumor sizes at spontaneous and combined detection.

Keeping in mind relation (2) between the survivor function of an absolutely con-
tinuous nonnegative r.v. and its hazard rate, we derive from (5) that, in the case of
non-random parameter 8,

F’WO (w) e fow rpo(u)du — e—ao fow fo(u)du — e—ao@o(’w). (7)

Therefore, i )
Fr,(n) = Fw,(go(n)) = 6_0‘0‘1’9(99(”))7

and hence
ENy =1 +/ Fyy(n)dn =1+ /Oo em0®e(00(M) g = 1 +/ e=@0®W) £/ (y)du. (8)
1 1 0

If 6 is a r.v. then an additional integration in (8) with respect to the distribution of
@ is required.
In particular, for non-random exponential tumor growth with rate A, we have

Fwy(w) = e XD w >0, (9)
Fy,(n) = e"ﬂkl("”l), n>1, (10)

and \
ENy=1+=. (11)

&o
Equation (10) suggests that in this case the r.v. Ny has a translated exponential
distribution with parameter ag/A. If A is a r.v. which is gamma distributed with
parameters u, v, then it follows from (11) that
QolV
We now specify the distribution of the r.v. Wj. Recall that W; is the time of
screening based detection (in the absence of spontaneous detection) counted from the
moment of appearance of the first malignant clonogenic cell. Indeed, the distribution
of W, depends on the selected screening schedule 7 = {1y < 7 < ... < 7, }. For the
sake of convenience, set 79 := 0 and 7,1 := oo. It suffices to define, for every t > 0,
the conditional distribution of W; given that T =t.
Let 7; <t <Tip1, 0<i<n. For0<i<n—-1landi+1<k <mn, define
the probability pi(k) := Pr(W; = 7, — t|T = t) of tumor detection at the k—th
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screen given the cancer onset at moment ¢, and by py(co) = 1 — X5_;; p:(k) the
corresponding conditional probability that tumor is not detected by screening.

We introduce a discrete analogue of the hazard rate for the screening based de-
tection by

n

Ht = E T(k)6re—t, (12)

k=i+1
where 8, stands for the Dirac measure at x, and the sum over the empty set of indices
is set, as usual, to be zero. By definition, the discrete measure p, is related to the
conditional survivor function of W; given that T" = ¢ through the equation

Fy,jr=t(w) = e~ Jo ) gy >0, (13)

compare with (2). It follows from (12) and (13) that

Z p:(j) + pe(o0 Z pe(3) + pe(co)]e (k)
=kl

or, equivalently, that

1- > () =[1- i pe()]e ™, (14)

j=itl j=itl
For k =4+ 1, we find from (14) that
1—p(i +1) = 0+, (15)

More generally, iterating this argument we obtain that
k-1 .
(k) = e“zj=i+1 ’"‘(7)[1 — e"”(k)], 1+1<k<n.

Observe that this holds true for all k¥ = 1,...,n, if we set p(k) = ri(k) = 0 for
1<k<L.

Similar to (5), we are assuming that the discrete rate of screening based detection
is proportional to the current tumor size:

ri(k) =aS(m —1), i+1<k<n, (16)

with some constant a > 0. Combining (13), (12) and (16) with (4) we find that,
given any t such that ; <t <741, 0<i<n—1,

FWllT:t(w) = 6_a21=i+1 f9(Tk_t), where T — t S w < Tj+1 — t, 1+ 1 S j S n.
(7
Consider the case of one exam occurring at a moment 7 with the detection proba-
bility p = p(t, 7) and the discrete detection rate 7 = r(t,7). Then by (15), 1-p=€™".
If the probability p is small then the rate r is approximately equal to p. In partic-
ular, under the assumtion (16), the probability of tumor detection is approximately
proportional to the current tumor size: p ~ aS(r —t). Klein and Bartoszyniski [34]
proceeded in their study of breast cancer from a more general assumption that the
probability of tumor detection is proportional to some power of the tumor size. Their
estimate of this power leads, however, to a value which is very close to 1.
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3. FORMULA FOR THE SCREENING EFFICIENCY FUNCTIONAL

We proceed from the following two biologically natural assumptions.
1. The r.v.’s Wy and T are independent.

2. For every t > 0, the r.v.’s W, and W} are conditionally independent given that
T =t.

The first assumption claims that the moment of spontaneous tumor detection mea-
sured from the appearance of the first malignant clonogenic cell is independent of
the prior duration of tumor latency. The second assumption reflects a technological
(or instrumental) nature of both detection processes. It states that, given the mo-
ment of cancer onset, the two times Wy and W, at which competing events of the
spontaneous and screening based tumor detection may occur, are independent. This
statement immediately follows from the assumption that both detection processes
are completely determined by the current tumor size as a deterministic function of
time.

For an admissible screening schedule 7 € 7, we define the efficiency functional
as the Kantorovich distance dx(No, N;7) (see [18], [20], [21]) between the tumor
sizes Ny and N at spontaneous and combined detection. This quantity serves as a
clinically natural measure of the gain resulting from screening. It is well known [19],
[20] that

d(N, No; 7) = /1 | Fy(n) — Fy(n) | dn. (18)

It follows from (7), inequality Wy > W, and monotonicity of the function fp that the
r.v. N, stochastically dominates the r.v. N : Fy, > Fy. This leads to the following
alternative expression for the efficiency functional:

d(N, No; 7) = fl ~ Fu,(n)dn — /1 ” Fy(n)dn = ENy — EN, (19)

where F stands for the expectation.
Suppose that parameter # is non-random. We set n = f3(w) and condition upon
the r.v. T in (18) to obtain

AN, Noi ) = [ | B (w) = Fiv(w) | fow)do

= [T 71 Buw) = Foires(w) | fy(w)dudEr(e),

where FW[T:t is the conditional survivor function of the r.v. W given that T' = ¢.
Since W = min(Wy, W1), it follows from our assumptions 1 and 2 that

FWO - FWlT:t - FW() - FWOFW1|T=t = FWOFW1|T=t'

Therefore,
d(N, No; 7) = /O - /0 ™ Fiyrse(w) Fing (w) £y (w) dwd P (t). (20)
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Observe that if T = ¢, where 7; <t < 7341, 0 < ¢ < n, then the only possible values of
ther.v. Wi are 1,41 —t, ..., Tnt1 —t. More specifically, Wi = 7;—t, i +1 < j < n,if the
j—th exam detected a tumor, and W) = 7,41 —t = oo if the tumor was not detected
in the course of screening. Therefore, if t > 7, or 7; <t < 741, 0 <4 <n—1, and
0 < w < 741 — t, then Fyyjr—(w) = 0. This allows us to rewrite (20) in the form

Tit1 j+1—t ~ '
d(N, Ny 7) / > [ Buagros) P (w) ) Fr ().

J=i+1

We now recall the explicit expression (17) derived above for the function F’W1|T:t,
and denote

Go(z) :=/ Fy,(w) fy(w)dw, >0,
to obtain finally

d(N, No; 7) Z / TS = e Dk o0 Gy (75 — 1) — Go(Ty41 — 8)]dFr(t)

j=itl

= Z / TS e R D)) L el Gy — t)dFr(t).  (21)
i =il
In the case when parameter 6 is random, the right-hand side of (21) should be
integrated additionally with respect to the distribution of 6.
If, in particular, fy(w) = e with a constant rate A, then invoking (9) we find

easily that
A — %\Q (e/\:z: __1) ,

Go(z) = —e

(&%)

xz > 0.
In this case the efficiency functional (21) takes on the form

)\(Tj—t)

n Jj—1 T, —t [ Ti;—1
d(N, No;7T) = / > e Lzt € )[1 —e ¢ ]e__f\Q(eA( ’ )_1)dFT(t).
Qo =0 Y7

= (22)

Observe also that (19) implies
EN = ENy — d(N, Ny; 7).

This allows for an explicit calculation of the expected tumor size at combined detec-
tion on the basis of formulas (8) and (21).

The problem
d(N,Ny;7) > max, T7€T, (23)

can be solved by exhaustive search with some simplification arising from the special
form of the dependence of the functional (21) on 7. A question of practical impor-
tance is what are the values of the number n of exams for which the problem (23)
is computationally feasible. We will conclude this paper, which deals primarily with
methodological and mathematical aspects of the problem of optimization of cancer
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surveillance, with some sample calculations with prescribed values of model param-
eters.

4. NUMERICAL EXPERIMENTS

It was assumed that the time T to tumor onset is gamma distributed with the mean
w = 50 years and the standard deviation o = 20 years. The graph of the c.d.f. Fr is
shown in Fig. 1. The law of tumor growth was taken to be deterministic exponential
with the rate A = 1.6 years™!, which corresponds to the tumor size doubling time of
approximately 5.2 months. The rate of spontaneous tumor detection was assumed
to be ap = 0.03. The graph of the survivor function Fyy, given by equation (9)
is presented in Fig. 2. The effect of one exam occurring after tumor onset with
the screening based tumor detection rate o = 0.1 is shown in Fig. 3 featuring the
survivor function of the time W to combined tumor detection.

The search for optimal screening schedules and optimal screening efficiencies was
conducted for a fixed number n of screens with no restriction on the moments of
exams and for various values of a. The method of optimization was the exhaustive
search with the step 0.25 years. Parameter values p = 50 years, A = 1.6 years™!, and
o = 0.03 were fixed throughout the calculations. For n = 10, plots of the rescaled
optimal screening efficiency d with o = 20 years versus « and, for o = 0.1, versus o
are shown in Fig. 4 and 5, respectively. As it could be expected, d increases with
increasing o and decreases with increasing o.

The results of our search for optimal screening schedules with n = 10, 20 and
with several values of ¢ and « are given in Table 1. For the reader’s convenience,
screening schedules are represented by the intervals A; = 7 — 74, 2 = 1,..,n,
between two successive exams. For all cases explored, optimal screening schedules
are uniform or very close to such.

As a test for optimality of a screening schedule, profiles of the efficiency functional
(22), with n — 1 moments of exams fixed at the optimal values and the remaining
one varying between the two fixed neighboring moments of exams, were computed.
For n = 20 and a = 0.1, these profiles are given in Fig. 6. For the moment 7y,
a clear cut maximum was observed (see Fig. 6d), while for 75 the maximum is
more flat (see Fig. 6¢). All intermediate moments of exams 73, ...719 demonstrated a
well-pronounced parabolic maximum (see Fig. 6a, b).
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Table 1.

n=20

Cptimél screening schedules

o a A1=T1

Ay

A4

20 0.1 |27.75

2.25

2.00

2.00

2.00

Ay

Al9

2.25

2.25

2.25

2.25

2.25

n=10

A;

Aq

201 0.1 | 35.00

2.50

2.50

2.50

2.25

2.50

2.50

2.50

2.50

2.50

201 0.3 [ 35.00

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

2.50

201 0.5 | 34.50

2.75

2.75

2.50

2.50

2.50

2.50

2.50

2.75

2.75

101 0.1 |40.75

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.25

3010.1 } 27.25

2.50

2.75

2.50

2.50

2.50

2.50

2.50

2.50

2.50
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Figure 1. The cumulative distribution function for the time to tumor onset.
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Figure 2. The survivor function for the time to spontaneous detection.
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Figure 3. The survivor function for the time to combined detection (a = 0.1).
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Figure 4. Optimal screening efficiency as a function of the parameter a given a fixed
number (n = 10) of examinations and o = 20 years.
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n=10

Figure 5. Optimal screening efficiency as a function of the standard deviation, o, of
the onset time (n = 10, & = 0.1).
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Figure 6. Profiles of the efficiency functional (n = 20,0 = 20 years, o = 0.1).
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